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Abstract

Recent development in generative models has demonstrated its ability to create high-quality
synthetic data. However, the pervasiveness of synthetic content online also brings forth
growing concerns that it can be used for malicious purpose. To ensure the authenticity of the
data, watermarking techniques have recently emerged as a promising solution due to their
strong statistical guarantees. In this paper, we propose a flexible and robust watermarking
mechanism for generative tabular data. Specifically, a data provider with knowledge of the
downstream tasks can partition the feature space into pairs of (key, value) columns. Within
each pair, the data provider first uses elements in the key column to generate a randomized
set of “green” intervals, then encourages elements of the value column to be in one of these
“green” intervals. We show theoretically and empirically that the watermarked datasets (i)
have negligible impact on the data quality and downstream utility, (ii) can be efficiently
detected, (iii) are robust against multiple attacks commonly observed in data science, and
(iv) maintain strong security against adversary attempting to learn the underlying watermark
scheme.

1 Introduction

With the recent development in generative models, synthetic data (Jordon et al., 2022) has become more
ubiquitous with applications ranging from health care (Gonzales et al., 2023) to finance (Assefa et al.,
2020; Potluru et al., 2023). Among these applications, synthetic data can be an alternative option to
human-generated data due to its high quality and relatively low cost. However, there is also a growing
concern that carelessly adopting synthetic data with the same frequency as human-generated data may
lead to misinformation and privacy breaches. Thus, synthetic data needs to be detectable by any upstream
data-owner.

Watermarking has recently emerged as a promising solution to synthetic data detection with applications in
generative text (Kirchenbauer et al., 2023; Kuditipudi et al., 2024), images (An et al., 2024), and relational
data (He et al., 2024; Zheng et al., 2024). A watermark is a hidden pattern embedded in the data that may be
indiscernible to an oblivious human decision-maker, yet can be algorithmically detected through an efficient
procedure. The watermark carries several desirable properties, notably: (i) fidelity - it should not degrade the
quality and usability of the original dataset; (ii) detectability - it must be reliably identified through a specific
detection process; (iii) robustness - it should withstand manipulations from an adversary (Katzenbeisser &
Petitcolas, 2000; Atallah et al., 2001); and (iv) security - it should be hard for an adversary to learn the
exact parameters of the underlying watermarking scheme.

Applying a watermark to the synthetic tabular dataset is particularly challenging due to its structure. A
tabular dataset must follow a specific format where each row contains a fixed number of features, i.e., precise
information about an individual. Hence, even perturbation of a subset of features in the data can substantially
affect the performance of downstream tasks. Furthermore, tabular data is commonly subjected to various
methods of data manipulation by the downstream data scientist, e.g., feature selection and data alteration,
to improve data quality and enable efficient learning. While prior works (He et al., 2024; Zheng et al., 2024)
have proposed watermarking for tabular data, they often fail to address how their watermark performs under
these innocuous attacks masked as preprocessing steps.
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Figure 1: Illustrative example of Algorithm 1 on a tabular dataset with 3 rows and 4 columns. This structure
corresponds to 2 pairs of (key, value) columns. In the first row, the element V1 is already in a ‘green’ bin.
Meanwhile, the other elements, V2 and V3, have to be moved from ‘red’ interval to a nearby ‘green’ interval.

This paper focuses on establishing a theoretical framework for watermarking tabular datasets. Our approach
leverages the structure of the feature space to form pairs of (key, value) columns for a more fine-grained
watermark embedding. The elements in the key columns are divided into consecutive intervals, whose centers
determine the seed to generate random ‘red’ and ‘green’ intervals for the corresponding value columns.
We embed the watermark into the data by promoting all elements in the value columns to fall into these
green intervals. For an illustrative example of this watermarking process on a stylized dataset, see Figure 1.
During the detection phase, we employ a hypothesis test to examine the characteristics of the empirical data
distribution. Furthermore, we provide theoretical and empirical analysis of the watermark’s robustness to
various oblivious attacks on synthetic and real-world datasets. Finally, we provide the first set of theoretical
results on the query complexity for an adversary to learn the watermarking scheme. We summarize our main
contributions as follows:

• In Section 4, we propose a fine-grained watermarking scheme for tabular data with strong statistical
guarantees and desirable properties: fidelity, detectability, robustness, and security. To our knowledge,
this is the first work that leverages the feature space structure to watermark tabular datasets.

• To enhance robustness and ensure high-quality data for downstream tasks, we employ a pairing
subroutine based on the feature importance. Our proposed pairing scheme retains twice as many
essential columns under the feature selection attack as the naive approach.

• In Section 7, we give an upper bound on the query complexity required by an adversary to learn our
watermarking scheme under two querying schema: table-like queries and row-like queries. This is the
first theoretical result on statistical learning of tabular watermarking techniques.

• In Section 8, we demonstrate our proposed watermarking method’s high fidelity, detectability,
robustness and security on a set of synthetic and real-world datasets.

2 Related Work

Watermarking tabular data There exists a long line of research studying watermarking schemes for
tabular data. Agrawal & Kiernan (2002) is the first work to tackle this problem setting, where the watermark
was embedded in the least significant bit of some cells, i.e., setting them to be either 0 or 1 based on a hash
value computed using primary and private keys. Subsequently, Xiao et al. (2007); Hamadou et al. (2011)
proposed an improved watermarking scheme by embedding multiple bits. Another approach is to embed the
watermark into the data statistics. Notably, Sion et al. (2003) partitioned the rows into different subsets
and embedded the watermark by modifying the subset-related statistics. This approach is then improved
upon by Shehab et al. (2007) to protect against insertion and deletion attacks by optimizing the partitioning
algorithm and using hash values based on primary and private keys. To minimize data distortion, the authors
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modeled the watermark as an optimization problem solved using genetic algorithms and pattern search
methods. However, this approach is strictly limited by the requirement for data distribution and the reliance
on primary keys for partitioning algorithms.

Inspired by the recent watermarking techniques in large language models (Kamaruddin et al., 2018; Aaronson,
2023; Kuditipudi et al., 2024; Kirchenbauer et al., 2023), He et al. (2024) and Zheng et al. (2024) have made
advances in watermarking generative tabular data by splitting the value range into red and green intervals.
He et al. (2024) proposed a watermarking scheme through data binning, ensuring that all elements in the
original data are close to a green interval. In conjunction with a statistical hypothesis test for detection, this
embedding method allows the authors to protect the watermark from additive noise attack. However, the
authors assumed that both the tabular dataset and the additive noise elements are sampled from a continuous
distribution, which does not account for attacks such as feature selection or truncation. Zheng et al. (2024)
instead only embedded the watermark in the prediction target feature. While the authors showed that this
watermarking technique can handle several attacks and categorical features, their results primarily focused
on watermarking one feature using a random seed, which is often insufficient in practice. In contrast, our
technique guarantees that half of the dataset is watermarked with the seed chosen based on the data in key
columns. As a result, our watermark approach is more robust to dataset-level manipulations such as feature
subset attacks, especially when the target feature for downstream tasks is not known in advance. Moreover,
we observe an interesting tradeoff between robustness and detection cost among these prior work and our
approach: with the same level of fidelity, He et al. (2024)’s watermark is the easiest to detect but is less
robust to oblivious and adversarial attacks compared to Zheng et al. (2024) and our watermarks. On the
other hand, we focus on enhancing the robustness of the watermark against potential attacks at the cost of
harder detection due to the need to recover the exact (key, value) feature pairs. Finally, Zheng et al. (2024)
offers a watermark algorithm that works for both continuous and categorical features with mildly higher
detection cost and robustness compared to He et al. (2024). For a high level summary of the comparison
between our method and these two works, see Table 1.

Particularly, both the prior works (He et al., 2024; Zheng et al., 2024) and our proposed approach maintain
high data fidelity, measured by comparing the utility of using the watermarked dataset compared to the
original unwatermarked dataset on downstream machine learning tasks. While all three approaches use a
similar hypothesis testing procedure to detect the watermark, He et al. (2024)’s watermark is the easiest
to detect. The additional cost of watermark detection in Zheng et al. (2024) and our schemes are due to
the selection of the watermarked features. At detection time, the third-party need to identify either the
target watermarked feature (for Zheng et al. (2024)’s watermark) or all (key, value) feature pairs (for our
approach). Among all three approaches, ours is the most robust to oblivious attacks (details in Section 8) as
our watermark scheme can withstand feature selection attacks, which is an improvement over prior work. For
security attacks, we provide the first upper bound on query complexity required by an adversary to learn
the watermark scheme. Under our analysis Section 7, this upper bound is the same for all three tabular
watermarking approaches.

Tabular Watermark Data Type Fidelity ↑ Detection Cost ↓ Robustness ↑ Security
He et al. (2024) Numerical High Low Low Õ(mnb)

Zheng et al. (2024) Numerical,
Categorical High Medium Medium Õ(mnb)

Ours Numerical High High High Õ(mnb)

Table 1: A comparison of the data type and results from (He et al., 2024; Zheng et al., 2024) and our technique
for watermarking generative tabular data. Although our method achieves high fidelity and robustness, it
does not handle categorical data and suffers from high detection costs. There is no clear ‘winner’ as each
paper focuses on improving a different watermark property.
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3 Problem Formulation

Notation. For n ∈ N+, we write [n] to denote {1, · · · , n}. For a matrix X ∈ Rm×2n, we denote the
L-infinity norm of X as ∥X∥∞ = maxi∈[m],j∈[2n] |Xi,j |. For an interval g = [a, b], we denote the center of g
as center(g) = (a+b)/2.

In this paper, we consider an original tabular dataset X ∈ [0, 1]m×2n with each column containing m i.i.d
data points from a (possibly unknown) distribution Fi, i ∈ [2n] with continuous probability density function
fi. Our main objective is to generate a watermarked version of this data, denoted Xw, that achieves the
following properties:

(i) Fidelity: the watermarked dataset Xw is close to the original data set X to maintain high fidelity,
measured through L∞ distance and Wasserstein distance;

(ii) Detectability: the watermarked dataset Xw can be reliably identified through the one-proportion
z-test using only few row samples;

(iii) Robustness: the watermarked dataset Xw achieves desirable robustness against multiple methods
of oblivious ‘attack’ commonly observed in data science;

(iv) Security: it is difficult for an adversary to learn the underlying watermarking scheme without
considerable computational efforts.

Note that in our analysis, we only focus on embedding the watermark in the continuous features of a tabular
dataset. While a real-world tabular dataset may contain many categorical features, embedding the watermark
in these features through a small perturbation of its value may cause significant changes in the meaning for
the entire sample (row). Given a dataset X with both categorical and continuous features, we can run our
algorithm on a smaller dataset X′ ⊆ X with same number of rows and only continuous features. After the
watermark has been embedded in X′ to get X′

w, we reconstruct a watermarked version of the original dataset
X by replacing the continuous features of X with its watermarked versions from X′

w. We leave the study of
watermarking categorical features in tabular datasets for future work.

4 Pairwise Tabular Data Watermark

In this section, we provide the details of the watermarking algorithm. At a high level, we embed the
watermark into a tabular dataset X by leveraging the pairwise structure of its feature space. Particularly, we
first partition the feature space into pairs of (key, value) columns using a subroutine PAIR. Detail of this
subroutine will be discussed in the later section. Then, we finely divide the range of elements in each key
column into bins of size 1/b to form b consecutive intervals. The center of the bins for each key column is
then used to compute a hash, which becomes the seed for a random number generator. This random number
generator then randomly generates red and green intervals for the corresponding value column, where each
interval is of size 1/b. For simplicity, in the remaining analysis, we assume that half of the intervals is red (and
the other half is green). Finally, we embed the watermark in elements of this value column by ensuring that
they are always in a nearby green interval with minimal distortion. This process is repeated until all value
columns are watermarked. We formally describe our proposed watermarking method in Algorithm 1 below.

4.1 Fidelity of Pairwise Tabular Data Watermark

First, we show that the watermarked dataset Xw maintains high fidelity, i.e., Xw is close to the X in L∞
distance. Since the red and green intervals are randomly assigned, our bound on the L∞ distance holds with
high probability. Intuitively, this bound depends on the distance to the nearest green interval: the probability
that a search radius contains a green interval grows with the number of adjacent bins included in the search.
Theorem 4.1 (Fidelity). Let X ∈ [0, 1]m×2n be a tabular dataset, and Xw is its watermarked version from
Algorithm 1. With probability at least 1 − δ for δ ∈ (0, 1), the L∞ distance between X and Xw is upper
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Algorithm 1: Pairwise Tabular Watermarking
Input: Tabular dataset X ∈ Rm×2n. Number of bins b ∈ N+. Pairing subroutine PAIR.
Output: Watermarked dataset Xw.

1: Divide the columns into n pairs of columns labeled (key, value) using PAIR.
2: Divide the key columns into bins of equal width 1/b to form consecutive intervals denoted {Ij}j∈[b],

where Ij = [j−1/b, j/b].
3: for each key column do
4: Use the center of the bins to compute the hash and seed a random number generator.
5: Randomly generate red and green intervals, ensuring equal number of each type. Denote the set of

green intervals as G.
6: for each element x in the paired value column do
7: Identify the nearest green interval as g = arg ming∈G |x− center(g)|.
8: if x /∈ g then
9: Replace x with xw uniformly sampled from g.

10: else
11: Leave x as is.

bounded by:
E[∥Xw − X∥∞] ≤ log2(mn/δ)

b
(1)

Theorem 4.1 gives rise to a natural corollary that upper bounds the Wasserstein distance, i.e., the distance
between the empirical distributions of X and Xw. Together, Theorem 4.1 and Corollary 4.2 show that
in expectation, the watermarked dataset Xw is close to the original dataset X. Thus, downstream tasks
operated on Xw instead of X would only induce additional error in the order of 1/b with high probability. We
empirically show the impact of this additional error for several synthetic and real-world datasets in Section 8.
Corollary 4.2 (Wasserstein distance). Let FX =

∑m
j=1 δX[j,:] be the empirical distribution built on X ∈

[0, 1]m×2n, and FXw =
∑m

j=1
1
mδXw[j,:] be the empirical distribution built on Xw. With probability at least

1 − δ ∈ (0, 1), the k-Wasserstein distance is upper bounded by

Wk(FX, FXw ) ≤
√

2n · log2(mn/δ)
b

(2)

5 Detection of Pairwise Tabular Data Watermark

In this section, we provide the details of the watermark detection protocol. Informally, the detection protocol
employs standard statistical measures to determine whether a dataset is watermarked with minimal knowledge
assumptions. Particularly, we introduce the following lemma that shows, with an increasing number of bins,
the probability of any element in a value column belonging to a green interval approaches 1/2. That is,
without running the watermarking algorithm 1, we have a baseline for the expected number of elements in
green intervals for each value column.
Lemma 5.1. Consider a probability distribution F with support in [0, 1]. As the number of bins b → ∞, for
each element x in a value column, we have Prx∼F [x ∈ G] → 1/2.

We formalize the process of detecting our watermark through a hypothesis test. Intuitively, the result of
Lemma 5.1 implies that, for any value column, the probability of an element being in a green list interval is
approximately 1/2. While this convergence is agnostic to how the green intervals are chosen, it is non-trivial
for a data-provider to detect the watermark due to the pairwise structure of Algorithm 1. Particularly, if
the data-provider has knowledge of the value columns and the hash function, they still need to individually
check which key column corresponds to the selected value column. In the worst case, all n key columns
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must be checked for each value column before the data-provider can confidently claim that the dataset is not
watermarked. With this knowledge, we formulate the hypothesis test as follows:

Hypothesis test

H0 : Dataset X is not watermarked H0,i : The i-th value column is not watermarked
H1 : Dataset X is watermarked

That is, when the null hypothesis holds, all of the individual null hypotheses for the i-th value column must
hold simultaneously. Thus, the data-owner who wants to detect the watermark for a dataset X would need to
perform the hypothesis test for each value column individually. If the goal is to reject the null hypothesis H0
when the p-value is less than a predetermined significant threshold α (typically 0.05 to represent 5% risk of
incorrectly rejecting the null hypothesis), then the data-provider would check if the p-value for each individual
null hypothesis H0,i is lower than α/n2 (after accounting for the family-wise error rate using Bonferroni
(Bonferroni, 1936)).1

Let Ti denote the number of elements in the i-th value column that falls into a green interval. Then, under
the individual null hypothesis H0,i, we know that Ti ∼ B(m, 1/2) for large number of rows m. Using the
Central Limit Theorem, we have 2

√
m

(
Ti

m − 1
2
)

→ N (0, 1). Hence, the statistic for a one-proportion z-test is

z = 2
√
m

(
Ti

m
− 1

2

)
(3)

For a given pair of (key, value) columns, the data-owner can calculate the corresponding z-score by counting
the number of elements in value column that are in green intervals. Since we are performing multiple
hypothesis tests simultaneously if the dataset has 10 pairs of columns and the chosen significant level
α = 0.05, then the individual threshold for each column is αi = 0.0005. The data-owner can look up the
corresponding threshold for the z-score to reject each individual null hypothesis. If the calculated z-score
exceeds the threshold, then the data-provider can reject the null hypothesis and claim that this value column
is watermarked. On the other hand, if the z-score is below the threshold, then the data-owner cannot conclude
whether this value column is watermarked or not until they have checked all possible key columns.

6 Robustness of Pairwise Tabular Data Watermark

In this section, we examine the robustness of the watermarked dataset when they are subjected to different
‘attacks’ commonly seen in data science. We assume that the attacker has no knowledge of the (key, value)
pairing scheme and, consequently, has no knowledge of the green intervals. We focus on two types of attacks:
feature extraction and truncation, which are common preprocess steps before the dataset can be used for a
downstream task.

6.1 Robustness to Feature Selection

Given a watermarked dataset Xw and a downstream task, a data scientist may want to preprocess the data
by dropping irrelevant features from Xw. Formally, we make the following assumption on how to perform
feature selection:
Assumption 6.1. Given a dataset X ∈ [0, 1]m×2n with features X1, · · · ,X2n, the data scientist perform
feature selection according to a known feature importance order with regard to the downstream task. Then,
the truncated dataset is of size m× k for k ≤ n, where only the top-k features with the highest importance are
kept from the original dataset.

Algorithm 1 takes a black-box pairing subroutine PAIR as an input to determine the set of (key, value)
columns. In the following analysis, we consider two feature pairing schemes: (i) uniform: features are paired

1With knowledge of the feature importance (detail in Section 6), the data-owner can choose adaptive significant level α for
each individual hypothesis test. Informally, we put more weight on pairs of (key, value) columns that are closer together in their
feature importance while ensuring that all significant levels sum up to the desired α threshold.
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uniformly at random, or (ii) feature importance: features are paired according to the feature importance
ordering, where features with similar importance are paired. Without loss of generality, we assume that
the columns of the original dataset are ordered in descending order of feature importance. Note that this
reordering of features does not affect the uniform pairing scheme and only serves to simplify notations in our
analysis. Formally, given two columns Xi and Xj , we define the probability of (Xi,Xj) being a (key, value)
pair as proportional to the inverse of the distance between their indices.

Pr[(Xi,Xj) is pair] =
1

|i−j|∑
ℓ∈[2n],ℓ̸=i

1
|i−ℓ|

(4)

In the following theorem, we show that feature importance pairing will preserve more pairs of columns after
the feature selection attack compared to uniform pairing.
Theorem 6.2. Given a watermarked dataset Xw and a data scientist attacking Xw with feature selection as
in Assumption 6.1. Then, the number of preserved column pairs under feature importance pairing is at least
twice as many as that under uniformly random pairing.

Theorem 6.2 implies that, under the feature importance pairing scheme, the truncated dataset would retain
more valuable information. In Section 8, we empirically show how this theoretical guarantee translates to
improved utility in the downstream task for various datasets.

6.2 Robustness to Truncation

In addition to feature selection, the data scientist can also ‘attack’ the watermarked dataset by directly
modifying elements in the dataset. In particular, we are interested in ‘truncation’ attack, where the data
scientist reduces the number of digits after the decimal point of all elements in the dataset. Formally, let
truncate : R → R be the truncation function defined as:

xtr = truncate(x, p) = ⌊10p · x⌋
10p

(5)

That is, for all x ∈ Xw, the data scientist truncates the digits in the mantissa of x to xtr ∈ R with p digits in
the mantissa. For example, with x = 0.369 and p = 2, the data scientist will truncate x to get xtr = 0.36. In
the following analysis, we focus on the case where p = 2, i.e., all values are truncated to 2 decimal places.
Extension to more digits in the mantissa follows the same analysis.

First, we determine how this truncation operation influence the distribution of watermarked elements in
green intervals. When a watermarked element x in a value column is truncated to xtr, it can fall out of the
original green interval if the bins [0, 1/b], · · · , [b−1/b, 1] and the hundredth grid points {0, 0.01, 0.02, · · · , 0.99, 1}
are not perfectly aligned. To illustrate this phenomenon, we presented stylized example where Algorithm 1
uses b = 150 bins for its watermarking procedure. Then, in the second bin I2 = [1/150, 2/150], any element
x ∈ [1/150, 0.01) will be truncated to xtr = 0.0 ∈ I1. If I1 is chosen to be a red interval by the random number
generator in Algorithm 1, then the truncation operation has successfully moved elements out of the green
intervals. In the following theorem, we show the probability of successful truncation attack as a function of
the bin width.
Theorem 6.3. Given a watermarked element x ∈ Ij = [j−1/b, j/b] and the truncation function defined
in Equation (5). Then, the probability that the truncated element xtr falls out of its original green interval is

Pr[xtr /∈ Ij ] = (b− 1)100 + b99(c · b− j + 1)
b100

where c ∈ {0.00, 0.01, · · · , 1.00} is the left grid point in Ij.

Intuitively, with larger bin size 1/b, the probability that our proposed watermarking scheme can withstand
truncation attack increases as the truncated elements are more likely to fall into the same bins as the original
elements. On the other hand, when the bins are more fine-grained, truncation would almost surely move
the watermarked data outside of the original intervals. This result presents an interesting trade-off between
smaller bin width for higher fidelity (see Theorem 4.1) and bigger bin width for better robustness, which has
not been studied in prior work on watermarking tabular data. With this insight, we can choose the bin width
to be the same as the truncation grid size, i.e., 1/b = 1/10p or b = 10p to ensure high fidelity and robustness.
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7 Decoding watermark

It is important to understand how many queries are required by an adversary to learn a watermarking scheme.
Specifically, this would allow us to bound the total number of queries we can allow one single user before
we run the risk of giving out our algorithms. Although such a result has not been studied in prior work
(He et al., 2024), we believe it would showcase the power of any watermarking scheme. To this end, we
demonstrate that the number of queries an adversary would require to learn the watermarking algorithm
presented in our work (Algorithm 1) is Õ(mnb), where b is the number of bins used to embed the watermark
in Algorithm 1, and the adversary uses a query table of size m× n. We informally state this result below,
and defer the formal statement and its proof until Appendix E.
Theorem (E.2, Informal). The watermarking scheme in Algorithm 1 can be learned up to a small error
ϵ ∈ (0, 1) with probability at least 1 − δ ∈ (0, 1) by making O

(
mnb log(mnb) log(1/ϵ)+log(1/δ)

ϵ

)
queries to the

detector using tables of size m× n.

In practice, any watermark provider using Algorithm 1 to watermark their data can artificially limit the total
number of queries by order or magnitudes less than the query complexity of Theorem E.2 to avoid divulging
the watermarking scheme. We also observe that the query complexity of learning Algorithm 1 is exactly same
as the query complexity of learning the algorithm of He et al. (2024). This is an artifact of how we derive our
bounds (via VC dimension). Beyond table like queries, we also study the case when queries are of the form of
rows. The formal theorem statement and an analysis for the case where queries are of the form of a row can
be found in Appendix E.3.

8 Experiments

In this section, we empirically evaluate the fidelity and robustness of our watermarking algorithm on a set of
synthetic and real-world datasets.

8.1 Synthetic Tabular Data

We begin our evaluation using synthetic data to validate the properties of our algorithm, including fidelity,
robustness, and performance sensitivity to selected parameters.

8.1.1 Experimental Detail

We generate a dataset of size 2000 × 2 using the standard Gaussian distribution. One column is designated
as the seed column, and the other is watermarked. Figures 2a and 2b contain KDE plots showing a minimal
difference between the distribution before and after watermarking.

In the second experiment, we generate multiple datasets, each containing 50 columns and varying numbers
of rows from 20 to 100, to validate the effect that the row count has on the maximum achievable z-score.
We repeat this process 5 times and take the average z-score. In Figure 2c, we find that as the number of
rows in the dataset increases, so does the maximum possible z-score. This means that given a choice of
z-score threshold, i) there is an increasing minimum number of total rows that the dataset must contain to
achieve that score, and ii) as the number of rows increases, so does the number of rows that an attacker must
sufficiently alter to break the watermark.

Finally, we consider the fidelity vs. robustness trade-off that the bin size parameter poses. We generate a
dataset of size 2000 × 2 using the standard Gaussian distribution. We watermark one column, using the other
for seeding, and vary the bin size between 10−4 and 10−1. The average mean squared error across 5 runs
between the original data and the watermarked data for each bin size is shown in Figure 2d. As expected,
greater fidelity is maintained with smaller bins since adjusting the data to fall into the nearest green bin
requires smaller perturbations. Figure 2e displays the accompanying susceptibility to noise that comes with
smaller bins. Across 5 runs, we add zero-mean Gaussian noise with standard deviation varying from 10−3 to
10−1 to the watermarked data and measure the effect on the z-score. In each case, we find that smaller bins
result in lower scores.
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(a) KDE before watermark (b) KDE after watermark (c) z-score with number of samples

(d) Fidelity with different bin sizes (e) z-score with Gaussian noise (f) Robustness under PAIR scheme

Figure 2: (a) KDE plot of the Gaussian data before watermarking. (b) KDE plot of the Gaussian data after
watermarking. (c) The maximum possible z-score increases with the number of rows in the dataset. (d)
Smaller bin sizes result in higher fidelity (lower MSE) between the original data and the watermarked data. (e)
Smaller bin sizes are more susceptible to noise, resulting in lower z-scores. Sigma corresponds to the standard
deviation of the applied zero-mean Gaussian noise. (f) Pairing columns according to feature importance
increases the pair preservation rate when the least important features are dropped. ‘Random’ indicates
random column pairings while ‘FI’ indicates column pairings biased toward similar feature importances.

8.1.2 Classification

To validate the effectiveness of our feature importance based pairing scheme, we generate a multi-class
classification dataset of size 75 × 75 using scikit-learn, setting the number of classes to 5 and the number of
informative features to 37. We create a set of column pairs using two different schemes: i) uniform: features
are paired uniformly at random and ii) feature importance: sampling columns by treating their feature
importance according to a Random Forest classifier as probabilities, pairing columns that are sampled one
after the other. Using these two pairing schemes we create two watermarked datasets by watermarking 12 of
the 37 available pairs, respectively.

For each of the watermarked datasets, we train a Random Forest classifier and use the resulting feature
importance to drop subsets of columns varying in size from 20% to 80%. The metric of interest in this
experiment is the percentage of pairs retained after column dropping. Both columns in a pair must still
remain in the dataset to be counted as a preserved pair. This entire process is repeated 5 times, and the
averaged results are shown in Figure 2f. The results show a significant increase in preserved pairs when the
pairs are created using the feature importance scheme.

8.2 Spoofing

We introduce a novel method (Algorithm 2) to spoof and test the robustness of our algorithm by comparing
it to the previous work of He et al. (2024). This spoofing algorithm is designed to subtly alter a dataset by
modifying the decimal points of its element, effectively inserting a watermark to the dataset. The process
begins by computing the integers and fractional parts of a synthetic dataset and a reference watermarked

9
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(a) Spoofing: our watermark (b) Spoofing: He et al. (2024)’s watermark

Figure 3: (a) Plot of our replacement spoofing algorithm on our watermark approach. Our approach is highly
robust as the spoofing algorithm as well as the percent of data processed has no effect on our dataset. (b) Plot
of our replacement spoofing algorithm on He et al. (2024)’s watermark approach. As the percentage of data
processed increases, the p-value decreases. As the percent of data processed increases near 40%, the p-value
of He et al. (2024)’s watermark is already below 0.05 and the watermark can be spoofed using Algorithm 2.

dataset. For the experiment shown below Figure 3b, we generated a synthetic dataset of the original
unwatermarked dataset to act as our target. For each element in the synthetic dataset, the algorithm identifies
the closest fractional part from the watermarked dataset to the current element. If the element is non-negative,
the fractional part is added to the integer part. This method ensures that the watermark is embedded in a
way that is minimally invasive, preserving the fidelity, detectability, overall structure and integrity of the
original data while introducing a subtle, detectable pattern. The experimental results are in Figure 3.

Using Algorithm 2, we can successfully spoof the watermark scheme by prior work (He et al., 2024) after
replacing about 40% of the synthetic dataset. That is, the spoofed dataset generated from Algorithm 2 will
be classified as ‘watermarked’ by the He et al. (2024)’s detector as the p-value drops below 0.05. On the other
hand, our watermark approach (Algorithm 1) cannot be spoofed by using Algorithm 2 at all. Even after
all data points in the synthetic dataset have been processed, the p-value from our detection hypothesis test
(Section 5) still remains above 0.05. This result shows that our watermark approach is more robust to simple
spoofing attack compared to prior work of He et al. (2024) by leveraging the structure of the tabular dataset.

Algorithm 2: Fractional Replacement
Input: Synthetic dataset S ∈ Rm×n, Watermarked dataset W ∈ Rm×n.
Output: Modified dataset X′.

1: Compute the fractional parts of S to form S_fractions.
2: Compute the fractional parts of W to form W_fractions.
3: for each element xij in S do
4: Extract the integer part ⌊xij⌋.
5: Compute the fractional part frac_part = |xij − ⌊xij⌋|.
6: Find the closest fractional part closest_frac = arg minf∈S_fractions∪W_fractions |f − frac_part|.
7: if xij < 0 then
8: Replace xij with ⌊xij⌋ − closest_frac.
9: else

10: Replace xij with ⌊xij⌋ + closest_frac.

10
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8.3 Generative Tabular Data

In addition to synthetic data, we evaluate the theoretical guarantees of our watermark approach on a set of
real-world datasets.

8.3.1 Datasets and Generators

Similar to He et al. (2024), we evaluate our proposed watermarking technique using two real-world datasets
of various sizes and distributions: Wilt (Johnson, 2014), and California Housing Prices.

Wilt. This dataset is a public dataset that is part of the UCI Machine Learning Repository. It contains
data from a remote sensing study that involved detecting diseased trees in satellite imagery. The data set
consists of image segments generated by segmenting the pan-sharpened image. The segments contain spectral
information from the Quickbird multispectral image bands and texture information from the panchromatic
(Pan) image band2. This dataset includes 4,889 records and 6 attributes. The attributes are a mixture of
numerical and categorical data types. The data set has a binary target label, which indicates whether a tree
is wilted or healthy. Therefore, the dataset has a classification task, which is to classify the tree samples as
either diseased or healthy.

California Housing Prices. The dataset was collected from the 1990 U.S. Census and includes various
socio-economic and geographical features that are believed to influence housing prices in a given California
district. It contains 20,640 records and 10 attributes, each of which represents data about homes in the
district. Similar to the previous dataset, the attributes are a mixture of continuous and categorical data
types. The dataset has a multi-target label, which indicates the proximity of each house to the ocean, making
it a multi-classification problem.

For each dataset, we generate corresponding synthetic datasets using neural network-based methods Park
et al. (2018) and statistical-based generative methods Li et al. (2020). Each of these methods for synthetic
data generation possesses distinctive capabilities and features. For this paper, we employ CTGAN (Xu
et al., 2019), Gaussian Copula (Masarotto & Varin, 2012), and TVAE (Xu et al., 2019) which represent
GAN-based (Goodfellow et al., 2014), copula-based (Patki et al., 2016), and VAE-based generators (Kingma
& Welling, 2013) respectively to generate tabular data.

8.3.2 Utility

Dataset Method Not WM
Watermarked (WM)

WM WM and
Truncated

WM and
20% cols drop

WM and
40% cols drop

FI Random FI Random

California
CTGAN 0.373 0.371 0.368 0.301 0.242 0.203 0.256
Copula 0.370 0.376 0.376 0.347 0.332 0.31 0.30
TVAE 0.797 0.799 0.798 0.448 0.407 0.385 0.365

Wilt
CTGAN 0.731 0.733 0.733 0.575 0.574 0.563 0.563
Copula 0.99 0.996 0.996 0.995 0.994 0.993 0.993
TVAE 0.989 0.989 0.989 0.965 0.977 0.972 0.803

Table 2: Accuracy of the downstream models under various attacks to the watermarked datasets. In particular,
we provide accuracy for the original dataset and its watermarked counterpart. Additionally, we consider
truncation as well as the column dropping separately that are typical preprocessing steps in a machine
learning pipeline. We note that the effect of our watermarking technique is negligible in terms of accuracy in
all cases while maintaining high detectability.

For evaluating utility, we focus on machine learning (ML) efficiency (Xu et al., 2019). In more detail, ML
efficiency quantifies the performance of classification or regression models that are trained on synthetic data

2Data available on the UCI platform at https://archive.ics.uci.edu/dataset/285/wilt
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and evaluated on the real test set. In our experiment, we evaluate ML efficiency with respect to the XGBoost
classifier (Chen & Guestrin, 2016) for classification tasks, which are then evaluated on real testing sets.
Classification performances are evaluated by the accuracy score. To explore the performance of our tabular
watermark on real-world data, we sample from each generative model a generated dataset with the size of a
real training set. For each setup, we create 5 watermarked training sets to measure the accuracy score. For
reproducibility, we set a specific random seed to ensure that the data deformation and model training effects
are repeatable on a similar hardware and software stack. To eliminate the randomness of the results, the
experimental outcomes are averaged over multiple runs from each watermarked training set.

We watermark each of the generated datasets using a bin size of 10−2 and thus only consider columns that
contain floating point numbers with at least 2 decimal places. This choice follows from the practical consider-
ation that watermarking with this bin size involves perturbing up to 2 decimal places, and watermarking any
original columns that did not already contain values with this property may make it obvious to an outside
party upon receiving the dataset that this specific section of the data has been manipulated.

We also consider two common data science preprocessing steps that downstream users of the watermarked
datasets might conduct: truncation and dropping the least important columns. We aim to determine if the
application of our watermark in conjunction with these operations For the former, we truncate to 2 decimal
places. For the latter, we investigate dropping the lowest 20% and 40% of columns in each case, considering
when the data is watermarked both with and without the feature importance-based pairing scheme.

We find that the effect of our watermarking technique is negligible in terms of accuracy in all cases while
maintaining high detectability as seen in Table 2.

9 Discussion and Future Work

In this work, we provided a novel robust watermarking scheme for tabular numerical datasets. Our wa-
termarking method partitions the feature space into pairs of (key, value) columns using knowledge of the
feature importance in the downstream task. We use the center of the bins from each key columns to generate
randomized red and green intervals and watermark the value columns by promoting its value to fall in green
intervals. Compared to prior work in watermarking generative tabular data, our method is more robust to
preprocess attacks such as feature selection and truncation at the cost of harder detection. There are a few
open questions in the current work that are ripe for investigation:

• How do we include the categorical columns either in the key or the value of the watermarking process?
Note that in the LLM setting, this was possible due to the richness of the vocabulary, which enabled
replacing one token with a close enough token with a similar semantic meaning.

• Can we extend this framework to the LLM settings for tabular data generation? This extension
embeds the watermark as part of the generation process (Venugopal et al., 2011) and the results
in this paper will need to be adapted to the new setting. The samples generated by the LLM will
be distorted due to the additional watermarking step, and recent work (Kuditipudi et al., 2024)
mitigates it by inducing correlations with secret keys. A similar injection of undetectable watermarks
has been studied by Christ et al. (2023). Adapting these to our settings would be of great interest.

• The current watermark scheme only considers a ‘hard’ watermark, where all elements in the value
columns are deterministically placed in the nearest green intervals. Can we extend the current
analysis to allow for a ‘soft’ watermark scheme similar to the one described in Kirchenbauer et al.
(2023), where we first promote the probability of being in green intervals, then sample from such
distribution to generate elements for the value columns?

• Our bounds for the query complexity to decode the query algorithm uses a specific embedding that
allows us to apply VC dimensional bounds for learning the query function using neural networks
with piecewise linear polynomial functions. It remains open whether one can derive a better query
complexity bounds for learning the query function without resorting only to neural networks.

12
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A Proof of Fidelity

Proofs of Theorem 4.1

Proof. Observe that the watermarked dataset Xw only differs from the original dataset X in the value
columns. For each element x in the value column of the original dataset X, let Y denote the chosen nearest
interval from the green list. Then, we have

E[|x− xw|]
≤ max

y∈Y
E[|x− y|]

≤ max
y∈Y

E
[
|x− y|

∣∣∣ |x− y| ≤ k

b

]
· Pr

[
|x− y| ≤ k

b

]
+ E

[
|x− y|

∣∣∣ |x− y| > k

b

]
· Pr

[
|x− y| > k

b

]
≤ max

y∈Y

k

b
·
(

1 − 1
2k

)
+ 1 · 1

2k

= k(2k − 1)
b · 2k

+ 1
2k

= k · (2k − 1) + 2b
b · 2k

where k ∈ [1, b) is a variable denoting the search radius for the nearest green interval. Then, choosing δ = 1
2k

and taking union bound over all elements, we have with probability at least 1 − δ:

E[∥X − Xw∥∞] ≤ log2(mn/δ)
b

Proof of Corollary 4.2

Proof. By definition of k-Wasserstein distance, we have with probability at least 1 − δ for δ ∈ (0, 1):

Wk(FX, FXw
)

≤

 m∑
j=1

1
m

∥X[j, :] − Xw[j, :]∥k
2

1/k

≤

 m∑
j=1

1
m

(√
2n ∥X[j, :] − Xw[j, :]∥∞

)k

1/k

≤

 m∑
j=1

1
m

(√
2n · log2(mn/δ)

b

)k
1/k

=

 m∑
j=1

1
m

(
√

2n · log2(mn/δ))k

bk

1/k

=
√

2n · log2(mn/δ)
b
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B Proofs of Detectability

Proof of Lemma 5.1

Proof. Let Ij =
[

j−1
b , j

b

]
denote an interval on [0, 1]. Then, for each element x in a value column, we have:

Pr
x∼F

[x ∈ G] = Pr
x∼F

[
b⋃

j=1
{x ∈ Ij&Ij ∈ G}]

=
b∑

j=1
Pr

x∼F
[x ∈ Ij&Ij ∈ G]

=
b∑

j=1
Pr[x ∈ Ij |Ij ∈ G] · Pr[Ij ∈ G]

=
b∑

j=1
Pr[x ∈ Ij ] · 1

2

= 1
2

C Proofs of Robustness

Proof of Theorem 6.2

Proof. We first look at the number of preserved columns under uniform pairing.

Uniform pairing. Let X′
w ∈ [0, 1]m×k denote the watermarked dataset after feature selection.

Consider the set of all possible pairs of columns after feature selection can be matched together. Then,
there are

(
k
2
)

possible choices, which are the number of 2-subset from k total columns. Define an event
Yℓ = 1[ℓ-th subset is a pair]. In each 2-subset, after a first column is selected, the probability that the second
column actually forms a pair with the first column is 1/2n−1. Hence, we have:

E[Yℓ] = 1
2n− 1

Hence, the expected number of preserved pairs of columns in X′
w under uniform random pairing can be

obtained by summing over all
(

k
2
)

possible choices as follow.

E[number of preserved pairs ∈ X′
w] =

(k
2)∑

ℓ=1
E[Yℓ]

=
(
k

2

)
1

2n− 1

= (k − 1)k
2(2n− 1)

Now, we can look at the number of preserved pairs of columns under feature importance pairing. Note
that we assume the feature selection is performed according to Assumption 6.1, and the columns are in
descending order of feature importance. Since we are only retaining the top k most important features after
feature selection, this is equivalent to counting the number of preserved pairs among the first k features after
reordering.
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Feature importance pairing. When the columns are paired according to the feature importance ordering,
we match them according to Equation (4). Define the event Yi,j = 1[columns (i, j) is a pair]. Then, for fixed
columns i and j, we have:

E[Yℓ] =
1

|i−j|∑2n
j ̸=i

1
|i−ℓ|

=
1

|i−j|∑i−1
ℓ=1

1
ℓ +

∑2n−i
s=1

1
s

=
1

|i−j|

Hi−1 +H2n−i

where Hi is the i-th harmonic number. We know that for i ≥ 1, we have ln(i + 1) ≤ Hi ≤ ln(i) + 1. Let
∆i = max{i− 1, 2n− i}. Since only the top-k columns are retained, we have:

E[number of preserved pairs ∈ X′
w]

=
k∑

i=1

k∑
j ̸=i,j=1

1
|i− j| (Hi−1 +H2n−i)

=
k∑

i=1

1
Hi−1 +H2n−i

 ∑
j ̸=i,j=1

1
|i− j|


=

k∑
i=1

1
Hi−1 +H2n−i

(Hi−1 +Hk−i)

=
k∑

i=1
1 − H2n−i −Hk−i

Hi−1 +H2n−i

= k −
k∑

i=1

H2n−i −Hk−i

Hi−1 +H2n−i

≥ k −
k∑

i=1

H2n−i

Hi−1 +H2n−i

Since we assume that k < n, we have

i < n ⇒ 2n− i > n > i− 1

⇒ 1
i− 1 >

1
2n− i

⇒ Hi−1 < H2n−i

⇒ H2n−i

Hi−1 +H2n−i
>

1
2

Therefore, the expected number of preserved pairs under feature importance pairing is k/2.
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Finally, we can compare the number of preserved pairs under the two pairing schemes:
k
2

(k−1)k
2(2n−1)

= k

2
2(2n− 1)
(k − 1)k

= 2n− 1
k − 1

≥ 2k − 1
k − 1

>
2k − 2
k − 1

= 2

Therefore, we retain twice as many pairs of (key, value) columns by using feature importance pairing scheme
compared to the naive approach of uniformly random pairing.

Proof of Theorem 6.3

Proof. If xtr falls out of the original green interval Ij , then we know that either xtr > j/b or xtr < j−1/b. Since
b ≤ 10p, we know that the green interval Ij lies in the union of at most two consecutive grids. We consider
two cases depending on whether Ij contains a grid point or not.

When Ij does not contain a grid point. Since the truncation function defined in Equation (5) always
truncate an element x to the nearest left grid point, which lies outside of Ij , we have

Pr [xtr /∈ Ij |c /∈ Ij ,∀c ∈ grid] = 1.

When Ij contains a grid point. Let c denote the grid point in Ij . Then, when the interval Ij contains a
grid point, we have:

Pr[xtr /∈ Ij |c ∈ Ij ] = Pr
[
x ∈

[j − 1
b

, c
)]

=
c− j−1

b
1
b

= c · b− j + 1

Then, summing over all possible events, we have the probability that the truncation attack successfully moves
a watermarked element out of its original green interval is:

Pr[xtr /∈ Ij ]
= Pr[xtr /∈ Ij |c /∈ Ij ,∀c ∈ grid] · Pr[c /∈ Ij ,∀i ∈ grid]
+ Pr[xtr /∈ Ij |c ∈ Ij ] · Pr[c ∈ Ij ]
= Pr[c /∈ Ij ,∀c ∈ grid] + (c · b− j + 1) Pr[c ∈ Ij ]

=
(
b− 1
b

)10p

+ c · b− j + 1
b

= (b− 1)10p + b10p−1(c · b− j + 1)
b10p

Hence, the probability that xtr is in a red interval is ρtrunc = (b−1)10p
+b10p−1(c·b−j+1)

2b10p .

Let nα = α
√

m
4 + m

2 be the minimum nmber of cells in the green intervals for the z-score to be at least α. For
the watermark to be removed, the attacker needs to truncate at least m− nα cells in a column. Therefore,
the expected number of attacked cells is m−nα

ρtrunc
.
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C.1 Robustness to additive noise

Theorem C.1. Fix a column in the watermarked dataset. Let na be the number of cells in this column
that an adversary can inject noise into. If the noise injected into each cell is drawn i.i.d from an uniform
distribution, i.e., ϵ ∼ Unif[−σ, σ], then the expected number of cells needed to remove the watermark is:

E[na] = m− nα

ρ

where nα = α
√

m
4 + m

2 is the minimum number of cells in the green intervals for the z-score to be at least α,
and ρ = 0.5 − 1

4bσ .

Proof. Consider a green cell x, where x ∈ Ij = [j−1/b, j/b]. When x is attacked with additional noise ϵ, the
modified cell x+ ϵ is no longer in the original green interval is Pr[x+ ϵ > j/b] + Pr[x+ ϵ < j−1/b]. Formally,
we have:

Pr[x+ ϵ /∈ Ij ] = Pr
[
x+ ϵ >

j

b

]
+ Pr

[
x+ ϵ <

j − 1
b

]
=

1 − j
b − x+ σ

2σ +
j−1

b − x+ σ

2σ
= 1 − 1

2bσ
Hence, the probability that x+ ϵ is in a red interval is 0.5 − 1

4bσ .

For the watermark to be removed, the attacker needs to inject noise into at least m− nα cells of the columns.
Therefore, the expected number of attacked cells is m−nα

0.5− 1
4bσ

.

D Additional experimental details

For synthetic data generation using three generative methods mentioned in the paper, we follow the default
hyperparameters found in the SDV library (Patki et al., 2016). We run the experiments on a machine type
of g4dn.4xlarge consisting of 16 CPU, 64GB RAM, and 1 GPU. For Utility evaluation, default parameters of
the XGBoost classifier (Chen & Guestrin, 2016) and Random Forest classifier with a seed of 42 was used.
The synthetic data generation, training and evaluation process typically finishes within 4 hours. Python 3.8
version was used to run the experiments.

D.1 Standard deviation

To investigate the performance of our tabular watermark on real-world data, we sample from each generative
model a generated dataset. For each setup, we create 5 watermarked training sets of each generator so as to
measure the mean accuracy and standard deviation. We use XGBoost classifier and Random Forest classifier
for classification tasks which are then evaluated on real testing sets.

D.2 Detection computation

We further investigate the effects that algorithm parameters and downstream manipulations have on the
robustness and computational requirements of the detection mechanism. We measure the number of column
pairing tests that must be done before a high confidence pair is found. We define high confidence as achieving
a z-score of 4 using 24 randomly selected rows. The process is stopped early when the watermark is detected.
Thus, when a watermark cannot be found, the result becomes N2 −N , where N is the number of columns in
the dataset.

We compare non-watermarked and watermarked data, and also test with truncation and dropped columns as
before. For the latter, here, we compare the 4 total combinations of column ordering choices: watermarking
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Dataset Method Not
WM

Watermarked (WM)

WM WM and
Truncated

WM and
40% cols drop

FI Random

California
CTGAN 0.373 ± 0.02 0.371 ± 0.01 0.368 ± 0.01 0.203 ± 0.1 0.256 ± 0.05
Copula 0.371 ± 0.02 0.376 ± 0.03 0.376 ± 0.03 0.31 ± 0.1 0.30 ± 0.13
TVAE 0.797 ± 0.02 0.799 ± 0.02 0.798 ± 0.02 0.385 ± 0.19 0.365 ± 0.08

Wilt CTGAN 0.731 ± 0.03 0.733 ± 0.04 0.733 ± 0.04 0.563 ± 0.03 0.563 ± 0.03
Copula 0.99 ± 0.01 0.996 ± 0.01 0.996 ± 0.01 0.993 ± 0.02 0.993 ± 0.02
TVAE 0.989 ± 0.00 0.989 ± 0.00 0.989 ± 0.00 0.972 ± 0.04 0.803 ± 0.01

Table 3: Accuracy of the downstream models under various attacks to the watermarked datasets. In particular,
we provide accuracy for the original dataset and its watermarked counterpart. Classifier used for utility
evaluation is XGBoost. In addition to this, we add the standard deviation of each record.

Dataset Method Not
WM

Watermarked (WM)

WM WM and
Truncated

WM and
40% cols drop

FI Random
California CTGAN 0.379 ± 0.01 0.379 ± 0.01 0.382 ± 0.01 0.309 ± 0.13 0.334 ± 0.12

Copula 0.377 ± 0.02 0.393 ± 0.03 0.393 ± 0.03 0.278 ± 0.18 0.333 ± 0.07
TVAE 0.805 ± 0.02 0.809 ± 0.02 0.808 ± 0.02 0.399 ± 0.19 0.449 ± 0.18

Wilt CTGAN 0.849 ± 0.04 0.856 ± 0.04 0.859 ± 0.04 0.644 ± 0.40 0.617 ± 0.42
Copula 0.986 ± 0.01 0.986 ± 0.01 0.985 ± 0.01 0.973 ± 0.02 0.969 ± 0.02
TVAE 0.985 ± 0.00 0.985 ± 0.00 0.985 ± 0.00 0.985 ± 0.00 0.81 ± 0.40

Table 4: Accuracy of the downstream models under various attacks to the watermarked datasets. In particular,
we provide accuracy for the original dataset and its watermarked counterpart. Classifier used for utility
evaluation is Random Forest. In addition to this, we add the standard deviation of each record.

and detection both present the option to order by feature importance or to order randomly. We find that,
with truncation, it generally takes the same number of computations as without, and that this amount is
significantly lower than the upper bound in the ‘Not watermarked’ column.

E Decoding algorithms

Consider the case that the continuous space in (0, 1] is uniformly discretized using bins of size 1/b i.e., construct
bins in (0, 1] as –

{
(0, 1

b ], ( 1
b ,

2
b ], . . . , ( b−1

b , 1]
}

. Then each of these bins are labeled {0, 1} with some probability
1 − pi and pi respectively. We save this data-structure. During query time, each entry of the input table/row
is checked to see if the values fall into the bins labeled 1. One can then compute z-scores based on the count
of watermarked data identified in the input table. The output of the query function is {0, 1} if the table is
not watermarked or watermarked, respectively.

For a given input to the query function and the output watermark label, we formalize this problem as a
learning problem as follows.

Assumptions. We assume that the number of bins b is known to the detection algorithm. We make such
an assumption because we use a statistical learning algorithm for detection, and if b is not known apriori, the
VC dimension of the relevant hypothesis class becomes infinity, giving us vacuous sample complexity bounds.
The algorithm generating the watermark fixes a probability p ∈ (0, 1), which is hidden from the detection
algorithm. The watermarking algorithm draws b independent and identically distributed samples from the
Bernoulli distribution with parameter p. Let y1, . . . , yb ∈ {0, 1} denote the observed values. For k ∈ [b], we
interpret yk to be the label of the interval (or bin)

(
k−1

b , k
b

]
.
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Dataset Method Not watermarked Watermarked Watermarked & truncated

California
CTGAN 72 ± 0 16 ± 0 19.6 ± 4.41
Copula 72 ± 0 16 ± 0 30 ± 4.94
TVAE 72 ± 0 58.6 ± 11.11 58.4 ± 11.35

Wilt
CTGAN 20 ± 0 9.2 ± 4.62 9.2 ± 4.62
Copula 20 ± 0 5.4 ± 3.5 5.6 ± 3.38
TVAE 20 ± 0 2.4 ± 0.5 2.2 ± 0.4

Table 5: Number of column pair tests executed during detection process. The process is stopped early when
the watermark is detected. Thus, when a watermark cannot be found, the result becomes N2 −N , where N
is the number of columns in the dataset.

Query function. Let Π: (0, 1] → [b] denote the canonical projection onto the bins, defined as Π(x) = k if
x ∈

(
k−1

b , k
b

]
for k ∈ [b]. Clearly, Π determines the index of the bin into which the input falls. Given a tabular

data X ∈ (0, 1]m×n as input, we denote Πm×n : (0, 1]m×n → [b]m×n to be the function that implements Π
entry wise on X. Let Fz : [b]m×n → R be a z-score function (chosen based on the problem), which first
maps the index of the bin in each entry of the tabular data to the corresponding label of that bin, and then
processes these labels in an appropriate fashion.

We define the query function Q : (0, 1]m×n → {0, 1} given by Q(x) = sgn(Fz(Πm×n(x))), where sgn: R →
{0, 1} is the sign (or indicator) function defined as

sgn(x) =
{

1 if x > 0
0 otherwise.

(6)

The query function tells us whether (1) or not (0) the input data is watermarked. Since the labels yk are not
known to the detection algorithm, the query function is also not known.

Goal. We want to approximate the query function up to a small prediction error with high probability.
Suppose that X is the data random variable, taking values in (0, 1]m×n. We are given M independent
and identically distributed training samples (X1, Q(X1)), . . . , (XM , Q(XM )). We wish to use these training
samples to learn the function Q, such that given ϵ ∈ (0, 1) and δ ∈ (0, 1), we have

Pr
X1,...,XM

(
Pr
X′

(
A((Xi)M

i=1,X′) ̸= Q(X′)
)

≤ ϵ
)

≥ 1 − δ, (7)

where A : ((0, 1]m×n)M × (0, 1]m×n → {0, 1} is an algorithm that takes the training data X1, . . . ,XM ∈
(0, 1]m×n as input and outputs the query function A((Xi)M

i=1, ·). Given training data X1, . . . ,XM ∈ (0, 1]m×n,
the quantity PrX′

(
A((Xi)M

i=1,X′) ̸= Q(X′)
)

is the expected value of the 0-1 loss function (with respect to
X′). Note that for Equation (7) to hold, the number of samples M depends on ϵ, δ, and possibly other
parameters in the problem. M can be interpreted as the number of queries required to learn the label
assignments up to a small error with high probability.

Since the number of bins b is known to the decoding algorithm, it suffices to consider query functions of
the form h = h′ ◦ Πm×n, where h′ : [b]m×n → {0, 1}. Furthermore, we suppose that the data is binned
before implementing the learning algorithm. Thus, we can write A(·, ·) = A′((Πm×n)M (·),Πm×n(·)), where
A′ : ([b]m×n)M × [b]m×n → {0, 1}. Denote X = Πm×n ◦ X to be the random variable taking values in [b]m×n,
obtained by binning the entries of X. Then, Equation (7) can be rewritten as

Pr
X1,...,XM

(
Pr
X′

(A′((Xi)M
i=1),X′) ̸= Q′(X′)) ≤ ϵ

)
≥ 1 − δ, (8)

For this reason, it suffices to assume that the input data corresponds to the labels of the bins.

E.1 VC dimension bounds for tabular data using query function of He et al. (2024)

In He et al. (2024), the z-score function is of the form Fz(X) = β0 +
∑n

j=1 βjTj(X) +
∑n

j=1 αjTj(X)2, where
for all i, j, we have βi, αj ∈ R and Tj(X) is the Hamming weight of the label string corresponding to the jth
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column of X. As noted earlier in this section, it suffices to focus our attention to the case where the input is
in [b]m×n, obtained by binning the original data. Our goal is to embed all possible query functions into a
neural network and use known bounds on the VC dimension for learning the true query function.
Theorem E.1 (Query complexity bound for querying He et al. (2024) with tabular data). Given the number
of bins b, number of rows m and columns n of the query table, there is a neural network that can use

O

(
mnb log(mnb) log(1/ϵ) + log (1/δ)

ϵ

)
(9)

training data (labeled data consisting of query table and whether or not the table is watermarked according
to He et al. (2024)), to learn the function which determines whether an input table is watermarked, with error
at most ϵ > 0 with respect to 0-1 loss (see Equation (8)), and with probability greater than or equal to 1 − δ
over the training samples.

Proof. We begin by embedding the labels k ∈ [b] into vectors, so as to vectorize the inputs [b]m×n. To
that end, associate the label k ∈ [b] to the standard unit vector ek ∈ Rb, where ek is the vector with 1 at
the kth entry and zero elsewhere. Let X ∈ [b]m×n be the input data, and let it be mapped to the vector
⊕n

j=1 ⊕m
i=1 eXij

. Here, the columns of X are vertically stacked on top of each other after vectorizing.

Let w ∈ {0, 1}b denote a candidate vector of labels. Observe that ⟨w, ek⟩ = wk for all k ∈ [b]. Furthermore,
for j ∈ [n], we have

〈
w⊕m,⊕m

i=1eXij

〉
=

∑m
i=1 wXij

. If w is the correct labeling vector for the jth column,
then

∑m
i=1 wXij = Tj(X). By definition, we have Tj(X) ∈ [0,m] for all j ∈ [n] and all X ∈ [b]m×n.

Next, we show how to obtain Tj(X)2 from Tj(X). First, add another layer where we map Tj(X) to
(m+ 1)Tj(X), by choosing the weight to be m+ 1. Next, choose the following piecewise polynomial activation
function:

ψ(z) =


0 if z ≤ 0
z if z ∈ (0,m]
z2 if z > m.

(10)

Then, since Tj(X) ∈ [0,m], we obtain ψ(Tj(X)) = Tj(X). On the other hand, since (m + 1)Tj(X) ∈
{0} ∪ [m+ 1,m(m+ 1)], we obtain ψ((m+ 1)Tj(X)) = (m+ 1)2Tj(X)2. The constant factor of (m+ 1)2 can
be absorbed into the weights in the next layer.

This motivates us to propose the following neural network architecture for the problem of learning the query
function (see Figure 4). The input nodes contain vectorized indices, such that columns of X are stacked
on top of each other. Therefore, there are a total of mnb input nodes. The first hidden layer computes
T1(X), . . . , Tn(X). Since the Tj(X) ∈ [0,m] for all j ∈ [n], the activation function acting on the first hidden
layer does nothing. The second layer effectively fans out Tj(X) for j ∈ [n]. The top node maps Tj(X) to
itself, whereas the bottom node maps Tj(X) to (m + 1)Tj(X). Thus, applying the activation function at
the second hidden layer gives us Tj(X) and (m + 1)2Tj(X)2 for j ∈ [n]. The output layer is obtained by
applying weights and biases to the second hidden layer. Thus, the output of the neural network is of the
form Fz(X) = β0 +

∑n
j=1 βjTj(X) +

∑n
j=1 αjTj(X)2. Since we need to compute the VC dimension, we apply

the sign (or indicator) function at the output layer. Therefore, the hypothesis class defined by this neural
network is the set of functions computed by it over all the weights and biases at each layer, with a sign
function (see (6)) applied at the end. By construction, all the query functions are a part of this hypothesis
class. Thus, an upper bound on the VC dimension of the hypothesis class defined by the neural network also
gives an upper bound on the VC dimension of the hypothesis class defined by all the query functions.

There are a total of O(mnb) weight and bias parameters before the first layer, O(n) parameters before the
second layer, and finally, O(n) parameters before the output layer. Thus, we have a total of wt = O(mnb)
parameters. We have a total of L = 3 layers. Let wti denote the number of weight and bias parameters from
the input layer till the ith layer. Then, the effective depth of the neural network is L =

∑L
i=1 wti/wt is of

order 1. Then, by (Bartlett et al., 2019, Theorem 6), the VC dimension of the neural network hypothesis class
is bounded above by O(mnb log(mnb)). Therefore, by (Shalev-Shwartz & Ben-David, 2014, Theorem 6.8), we
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Figure 4: Neural network architecture to embed the problem of learning the query function. The activation
function is applied at every node, except the nodes in the input and the output layers.

can infer that

M = O

(
mnb log(mnb) log(1/ϵ) + log (1/δ)

ϵ

)
(11)

training samples are sufficient to learn the query function to within an error of ϵ (with respect to the 0 − 1
loss) with probability greater than or equal to 1 − δ over the training samples.

Now, denote A′(training data, ·) to be the query function that is learned from the training data. Then, if the
distribution of the data is uniform, then PrX′(A′(training data,X′) ̸= Q′(X′)) is equal to the fraction of indices
where the learned query function differs from the true query function. As a result, setting ϵ = 0.5/(mnb), we
obtain the situation where we learn the query function exactly. Thus, we need O((mnb)2 log(mnb) log(b) +
mnb log(1/δ)) samples to learn the query function exactly with probability at least 1 − δ over the training
samples.

E.2 VC dimension bounds for tabular data using query function of Algorithm 1

Unlike He et al. (2024), in our work, we only watermark n columns of the input table (see Algorithm 1). Thus,
during query time, one would need to identify first the columns of the query table that are watermarked
(referred to as value columns). As stated in Section 5, the query function returns 1 if the z-score of each
of the value columns are greater than an input threshold zth ≥ 0. Thus, we prove the complexity of
decoding Algorithm 1 for α ≤ 0.5 (which corresponds to zth ≥ 0).
Theorem E.2 (Query complexity bound for decoding Algorithm 1). Given the number of bins b, number of
rows m and columns 2n of the query table, and assuming that the significance level α for z-test in Section 5
is at most 0.5, there is a neural network that can use

O

(
mnb log(mnb) log(1/ϵ) + log (1/δ)

ϵ

)
(12)

training data (labeled data consisting of query table and whether or not the table is watermarked according to
Algorithm 1), to learn the function which determines whether an input table is watermarked, with error at
most ϵ > 0 with respect to 0-1 loss (see Equation (8)), and with probability greater than or equal to 1 − δ over
the training samples.
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Proof. Following the proof of Theorem E.1, we embed data X ∈ [b]m×2n before feeding into a neural network.
First, we embed the labels k ∈ [b] into vectors, so as to vectorize the inputs [b]m×2n. To that end, associate
the label k ∈ [b] to the standard unit vector ek ∈ Rb, where ek is the vector with 1 at the kth entry and zero
elsewhere. Let X ∈ [b]m×2n be the input data, and let it be mapped to the vector ⊕2n

j=1 ⊕m
i=1 eXij

. Here,
each column of each row of X are vertically stacked on top of each other after vectorizing.

Now, our goal is to show that there is a neural network architecture with appropriate weights, biases, and
activation function such that the output of the neural network is the true query function. The true query
function outputs 1 if and only if the z-score of all the value columns is above the threshold zth. As per
Section 5, we denote the z-score of the j-th column as zj = 2(Tj(X)/

√
m) −

√
m, for all j ∈ [2n]. For

obtaining the true query function, we need to know which columns correspond to the value columns as well
as which bins are watermarked in a given value column. Since we seek to embed the true query function into
a neural network, we assume that we know the indices V corresponding to the value column as well as the
true labeling vectors. Algorithm 1, by design, ensures that V ⊆ [2n] and |V| = n.

The first hidden layer contains a total of 2n nodes. Let w ∈ {0, 1}b denote a candidate vector of labels (1 is
interpreted as watermarked, while 0 is interpreted as not watermarked). Observe that ⟨w, ek⟩ = wk for all
k ∈ [b]. Furthermore, for all j ∈ [n], we have

〈
w⊕m,⊕m

i=1eXij

〉
=

∑m
i=1 wXij

. If j ∈ V and w is the correct
labeling vector for the jth column, then

∑m
i=1 wXij

= Tj(X). Since Tj(X) ∈ [0,m], we add a bias of
√
m+ 1

so that Tj(X) +
√
m+ 1 >

√
m. If, on the other hand, if j /∈ V , i.e., we have a key column, then we set the

weight w equal to the zero vector and add a bias of m+
√
m+ 2 >

√
m. (We choose such a bias to internally

distinguish a key column from a value column, since Tj(X) +
√
m+ 1 < m+

√
m+ 2.) Subsequently, we

apply the following piecewise-linear activation function:

ψ(x) =


0 if x ≤ 0
1 + 1

2n if 0 ≤ x ≤
√
m

x if x >
√
m.

(13)

Then, the output of the first hidden layer (after applying the weights, biases, and activation function) is equal
to Tj(X) +

√
m+ 1 if j ∈ V, while it is equal to m+

√
m+ 2 if j /∈ V.

For the second layer, our goal is to obtain the z-scores for the value columns and compare it to the threshold.
To achieve this, we add a weight of 2/

√
m and a bias of −

√
m− 2 − 2/

√
m− zth. Applying such a weight an

bias to the value column j ∈ V gives (2/
√
m)(Tj(X) +

√
m+ 1) −

√
m− 2 − 2/

√
m− zth = zj − zth, where zj

is the z-score of the jth column. Now, if zj − zth ≤ 0 (or zj ≤ zth), then the activation function outputs 0.
On the other hand, if zj − zth > 0, then since zj ≤

√
m and zth ≥ 0 (as α ≤ 0.5 by assumption), we have

zj − zth ≤
√
m, so that the activation function outputs 1 + 1/(2n). Note that for the key columns, we can set

the weights as 1 and biases as 0. Then applying the activation function to these nodes, we have the output
m+

√
m+ 2 as before.

Finally, in the third layer (which is also the final/output layer), for each column corresponding to the values,
we apply a weight of 1 and a bias of −n. For the key columns, we apply weight and bias equal to 0 (which
is equivalent to ignoring the key columns at the final layer). Therefore, the output at the final layer is∑

j∈V(1 + 1/(2n))1[zj − zth > 0] − n, where 1[A] denotes the indicator function of the event A (i.e., 1[A] = 1
if A is true and 0 otherwise). It can be verified that the output is positive if and only if zj > zth for all j ∈ V .
Then, we apply the sign function given in (6) to this output. Thus, such a network can learn the true query
function required. A schematic of the proposed neural network architecture is given in Figure 5.

The total number of parameters required to represent the weights and biases before the first layer is O(mnb),
before the second layer is O(n), and before the third layer is O(n). Thus we have a total of O(mnb) parameters.
We also have 3 layers in the architecture. The effective depth of our neural network is O(1). Then, using
(Bartlett et al., 2019, Theorem 6), the VC dimension of the neural network hypothesis class is bounded above
by O(mnb log(mnb)). Using (Shalev-Shwartz & Ben-David, 2014, Theorem 6.8),

M = O

(
mnb log(mnb) log(1/ϵ) + log(1/δ)

ϵ

)
(14)
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Figure 5: Neural network architecture to embed the problem of learning the query function for dataset
watermarked according to Algorithm 1. The activation function is applied at every node, except the nodes in
the input and the output layers.

training samples are sufficient to learn the query function up to error ϵ with respect to the 0 − 1-loss with
probability greater than or equal to 1 − δ over the training samples.

Now, denote A′(training data, ·) to be the query function that is learned from the training data. Then, if the
distribution of the data is uniform, then PrX′(A′(training data,X′) ̸= Q′(X′)) is equal to the fraction of indices
where the learned query function differs from the true query function. As a result, setting ϵ = 0.5/(mnb), we
obtain the situation where we learn the query function exactly. Thus, we need O((mnb)2 log(mnb) log(b) +
mnb log(1/δ)) samples to learn the query function exactly with probability at least 1 − δ over the training
samples.

Corollary E.3 (Query complexity of row queries to both He et al. (2024) and Algorithm 1). For queries of the
form X ∈ Rm×1 and query function that computes z = 2T (X)/

√
m−

√
m or any linear function of T (X), there

is a neural network that can learn this query function up to error ϵ in 0-1 loss using O
(

mb log(1/ϵ)+log(1/δ)
ϵ

)
samples with probability 1 − δ over the training samples.

Proof. Using n = 1 in Theorem E.2 gives us the result. For He et al. (2024), observe that when a single
row is input, Tj(X) for all j ∈ n is in {0, 1}. As such, the statistical test uses z-score tests on the standard
normal distribution, and not the χ2 test. The hypothesis class corresponding to the neural architecture as
defined in Theorem E.2 is thus PAC learnable for this problem, and so the query complexity bound follows
by setting n = 1.

E.3 A lower bound for row queries to He et al. (2024) given the z-scores

Consider the case that the continuous space in (0, 1] is uniformly discretized using bins of size 1/b, i.e., construct
bins in (0, 1] as –

{
(0, 1

b ], ( 1
b ,

2
b ], . . . , ( b−1

b , 1]
}

. Then each of these bins are labeled {0, 1} with some probability
1−p and p respectively. We save this data-structure, and allow anyone to query it with S ∈ (0, 1]m, responding
with the z-score (Equation 3) and whether the data is watermarked or not. In this section, we want to
bound the minimum number of queries one can make to the model and estimate the watermarking scheme
with high accuracy. Specifically we ask:
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When the number of bins b is known, what is the query complexity to correctly identify all red and green
intervals used for watermarking?

Observe that for a row, the z-score is computed as: 2
√
m

(
T
m − 1

2
)
, where T is the number of values in the

row falling in the bins with label 1.

When b is known to the adversary, the problem can be reduced to the 2-color Mastermind game. In 2-color
mastermind the codemaker creates a secret code using a sequence of colored pegs, and the codebreaker
guesses the sequence. At each query by the codebreaker, the codemaker provides the number of pegs they
correctly guessed. As such, given z is the output of each query, one can easily compute the number of values
in each bin {0, 1}. Thus, given any b, one can reduce this problem to the 2-color Mastermind game. This
specific form of Mastermind has been extensively studied in the literature Chvátal (1983); Knuth (1976). In
particular, with 2 possible colors: red and green, the maximum number of row queries needed to recover the
exact watermarking scheme is Θ

(
b log(2)
log(b)

)
. Hence, the ‘red-green’ watermarking scheme by He et al. (2024)

can be learned by an adversary making Θ
(

b log(2)
log(b)

)
queries to the detector. Note that this lower bound does

not directly apply to the upper bounds derived using VC theory in Appendix E.1 and Appendix E.2, since
here we assume access to the z-score for each query.
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